Welcome Guest, please sign in to participate in a discussion. Search | Active Topics |

PCF for an average of multiple LR values? Rate this Topic:
Previous Topic · Next Topic Watch this topic · Print this topic ·
jynkin
Posted : Saturday, May 12, 2012 8:16:14 AM
Registered User
Joined: 10/7/2004
Posts: 286

Is there a PCF way to calculate (or approximate) the average of multiple Linear Regression values. I'm interested in knowing the average of LR's from a duration of 10 to 200 in ten increments. 

Such that n equals:      (LR10+LR20+LR30+LR40+LR50+LR60+LR70+LR80+LR90+

LR100+LR110+RL120+LR130+LR140+LR150+LR160+LR170+LR180+LR190+LR200) / 20 = n

 

thanks,

jynkin

Bruce_L
Posted : Monday, May 14, 2012 10:48:43 AM


Worden Trainer

Joined: 10/7/2004
Posts: 65,138

Please try the following:

.06749693 * C + .06303906 * C1 + .0585812 * C2 + .05412333 * C3 + .04966547 * C4 + .0452076 * C5 + .04074974 * C6 + .03629187 * C7 + .03183401 * C8 + .02737614 * C9 + .03291828 * C10 + .03118769 * C11 + .0294571 * C12 + .0277265 * C13 + .02599591 * C14 + .02426532 * C15 + .02253473 * C16 + .02080414 * C17 + .01907354 * C18 + .01734295 * C19 + .02061236 * C20 + .019596053 * C21 + .01857975 * C22 + .01756344 * C23 + .01654713 * C24 + .01553083 * C25 + .01451452 * C26 + .01349821 * C27 + .01248191 * C28 + .0114656 * C29 + .01378263 * C30 + .0130889 * C31 + .01239518 * C32 + .01170145 * C33 + .01100773 * C34 + .010314 * C35 + .009620274 * C36 + .008926548 * C37 + .008232823 * C38 + .007539097 * C39 + .009345371 * C40 + .008834572 * C41 + .008323773 * C42 + .007812974 * C43 + .007302175 * C44 + .006791376 * C45 + .006280578 * C46 + .005769779 * C47 + .00525898 * C48 + .004748181 * C49 + .006237382 * C50 + .00584423 * C51 + .005451078 * C52 + .005057926 * C53 + .004664774 * C54 + .004271623 * C55 + .003878471 * C56 + .003485319 * C57 + .003092167 * C58 + .002699015 * C59 + .00397253 * C60 + .003661345 * C61 + .003350161 * C62 + .003038976 * C63 + .002727791 * C64 + .002416607 * C65 + .002105422 * C66 + .001794238 * C67 + .001483053 * C68 + .001171868 * C69 + .002289255 * C70 + .002038433 * C71 + .00178761 * C72 + .001536788 * C73 + .001285965 * C74 + .001035143 * C75 + .0007843202 * C76 + .0005334978 * C77 + .0002826753 * C78 + .00003185283 * C79 + .00103103 * C80 + .0008265042 * C81 + .000621978 * C82 + .0004174518 * C83 + .0002129257 * C84 + .0004174519 * C85 - .0002129257 * C86 - .0004006528 * C87 - .000605179 * C88 - .0008097052 * C89 + .00009687976 * C90 - .00007101638 * C91 - .0002389125 * C92 - .0004068086 * C93 - .0005747048 * C94 - .0007426009 * C95 - .0009104971 * C96 - .001078393 * C97 - .001246289 * C98 - .001414185 * C99 - .0005820816 * C100 - .0007202748 * C101 - .0008584679 * C102 - .000996661 * C103 - .001134854 * C104 - .001273047 * C105 - .001411241 * C106 - .001549434 * C107 - .001687627 * C108 - .00182582 * C109 - .001054922 * C110 - .001168545 * C111 - .001282169 * C112 - .001395792 * C113 - .001509415 * C114 - .001623038 * C115 - .001736661 * C116 - .001850284 * C117 - .001963907 * C118 - .002077531 * C119 - .00135782 * C120 - .001450782 * C121 - .001543744 * C122 - .001636706 * C123 - .001729668 * C124 - .00182263 * C125 - .001915592 * C126 - .002008554 * C127 - .002101516 * C128 - .002194478 * C129 - .001518209 * C130 - .001593555 * C131 - .001668901 * C132 - .001744248 * C133 - .001819594 * C134 - .00189494 * C135 - .001970286 * C136 - .002045632 * C137 - .002120978 * C138 - .002196324 * C139 - .001557384 * C140 - .001617532 * C141 - .001677681 * C142 - .001737829 * C143 - .001797978 * C144 - .001858126 * C145 - .001918275 * C146 - .001978423 * C147 - .002038571 * C148 - .00209872 * C149 - .001492202 * C150 - .001539105 * C151 - .001586008 * C152 - .001632912 * C153 - .001679815 * C154 - .001726719 * C155 - .001773622 * C156 - .001820526 * C157 - .001867429 * C158 - .001914332 * C159 - .001336236 * C160 - .001371493 * C161 - .001406751 * C162 - .001442008 * C163 - .001477266 * C164 - .001512523 * C165 - .00154778 * C166 - .001583038 * C167 - .001618295 * C168 - .001653553 * C169 - .001100575 * C170 - .001125512 * C171 - .00115045 * C172 - .001175388 * C173 - .001200325 * C174 - .001225263 * C175 - .0012502 * C176 - .001275138 * C177 - .001300075 * C178 - .001325013 * C179 - .0007943947 * C180 - .0008101241 * C181 - .0008258535 * C182 - .0008415829 * C183 - .0008573124 * C184 - .0008730418 * C185 - .0008887712 * C186 - .0009045006 * C187 - .0009202301 * C188 - .0009359595 * C189 - .0004253731 * C190 - .0004328358 * C191 - .0004402985 * C192 - .0004477612 * C193 - .0004552239 * C194 - .0004626866 * C195 - .0004701493 * C196 - .0004776119 * C197 - .0004850746 * C198 - .0004925373 * C199

Using Linear Regression vs Classical Peaks/Valleys for Divergence Analysis
PCF Formula Descriptions
Handy PCF example formulas to help you learn the syntax of PCFs!



-Bruce
Personal Criteria Formulas
TC2000 Support Articles
jynkin
Posted : Monday, May 14, 2012 11:03:30 AM
Registered User
Joined: 10/7/2004
Posts: 286

Wow....that's awesomely close to my spreadsheet calculations.  And very useable.  Thanks! jynkin

Bruce_L
Posted : Monday, May 14, 2012 11:18:22 AM


Worden Trainer

Joined: 10/7/2004
Posts: 65,138

You're welcome.



-Bruce
Personal Criteria Formulas
TC2000 Support Articles
Users browsing this topic
Guest-1

Forum Jump
You cannot post new topics in this forum.
You cannot reply to topics in this forum.
You cannot delete your posts in this forum.
You cannot edit your posts in this forum.
You cannot create polls in this forum.
You cannot vote in polls in this forum.