Registered User Joined: 1/4/2005 Posts: 15
|
Hi Bruce
If you are available today, I would like to follow-up on a Regression Trend Line PCF you helped me with last year. You provided me with a positive and negative sloping RTL for 100 and 40 days which has been working well for my scanning strategies. I would like to supplement those PCF's with a middle time frame of 70 days. I have used your previous formula as a template for this time frame which I believe I have setup the body of the formula correctly, but I still don't understand how you came up with the denominator in this equation. I am including your 100 day formula for reference and your accompanying link, but I was still not able to figure it out. As always, I appreciate your help.
Thanks - Chuck
My attempt at a 70-Period Regression Trend Line Sloping PCF
Positive
(34.5 * C+ 33.5 * C1 + 32.5 * C2 + 31.5 * C3 + 30.5 * C4 + 29.5 * C5 + 28.5 * C6 + 27.5 * C7 + 26.5 * C8 + 25.5 * C9 + 24.5 * C10 + 23.5 * C11 + 22.5 * C12 + 21.5 * C13 + 20.5 * C14 + 19.5 * C15 + 18.5 * C16 + 17.5 * C17 + 16.5 * C18 + 15.5 * C19 + 14.5 * C20 + 13.5 * C21 + 12.5 * C22 + 11.5 * C23 + 10.5 * C24 + 9.5 * C25 + 8.5 * C26 + 7.5 * C27 + 6.5 * C28 + 5.5 * C29 + 4.5 * C30 + 3.5 * C31 + 2.5 * C32 + 1.5 * C33 + .5 * C34 - .5 * C35 - 1.5 * C36 - 2.5 * C37 - 3.5 * C38 - 4.5 * C39 - 5.5 * C40 - 6.5 * C41 - 7.5 * C42 - 8.5 * C43 - 9.5 * C44 - 10.5 * C45 - 11.5 * C46 - 12.5 * C47 - 13.5 * C48 - 14.5 * C49 - 15.5 * C50 - 16.5 * C51 - 17.5 * C52 - 18.5 * C53 - 19.5 * C54 - 20.5 * C55 - 21.5 * C56 - 22.5 * C57 - 23.5 * C58 - 24.5 * C59 - 25.5 * C60 - 26.5 * C61 - 27.5 * C62 - 28.5 * C63 - 29.5 * C64 - 30.5 * C65 - 31.5 * C66 - 32.5 * C67 - 33.5 * C68 - 34.5 * C69) / ? > 0
Negative
(34.5 * C+ 33.5 * C1 + 32.5 * C2 + 31.5 * C3 + 30.5 * C4 + 29.5 * C5 + 28.5 * C6 + 27.5 * C7 + 26.5 * C8 + 25.5 * C9 + 24.5 * C10 + 23.5 * C11 + 22.5 * C12 + 21.5 * C13 + 20.5 * C14 + 19.5 * C15 + 18.5 * C16 + 17.5 * C17 + 16.5 * C18 + 15.5 * C19 + 14.5 * C20 + 13.5 * C21 + 12.5 * C22 + 11.5 * C23 + 10.5 * C24 + 9.5 * C25 + 8.5 * C26 + 7.5 * C27 + 6.5 * C28 + 5.5 * C29 + 4.5 * C30 + 3.5 * C31 + 2.5 * C32 + 1.5 * C33 + .5 * C34 - .5 * C35 - 1.5 * C36 - 2.5 * C37 - 3.5 * C38 - 4.5 * C39 - 5.5 * C40 - 6.5 * C41 - 7.5 * C42 - 8.5 * C43 - 9.5 * C44 - 10.5 * C45 - 11.5 * C46 - 12.5 * C47 - 13.5 * C48 - 14.5 * C49 - 15.5 * C50 - 16.5 * C51 - 17.5 * C52 - 18.5 * C53 - 19.5 * C54 - 20.5 * C55 - 21.5 * C56 - 22.5 * C57 - 23.5 * C58 - 24.5 * C59 - 25.5 * C60 - 26.5 * C61 - 27.5 * C62 - 28.5 * C63 - 29.5 * C64 - 30.5 * C65 - 31.5 * C66 - 32.5 * C67 - 33.5 * C68 - 34.5 * C69) / ? < 0
Positively sloping RTL – 100 Period
(49.5 * C + 48.5 * C1 + 47.5 * C2 + 46.5 * C3 + 45.5 * C4 + 44.5 * C5 + 43.5 * C6 + 42.5 * C7 + 41.5 * C8 + 40.5 * C9 + 39.5 * C10 + 38.5 * C11 + 37.5 * C12 + 36.5 * C13 + 35.5 * C14 + 34.5 * C15 + 33.5 * C16 + 32.5 * C17 + 31.5 * C18 + 30.5 * C19 + 29.5 * C20 + 28.5 * C21 + 27.5 * C22 + 26.5 * C23 + 25.5 * C24 + 24.5 * C25 + 23.5 * C26 + 22.5 * C27 + 21.5 * C28 + 20.5 * C29 + 19.5 * C30 + 18.5 * C31 + 17.5 * C32 + 16.5 * C33 + 15.5 * C34 + 14.5 * C35 + 13.5 * C36 + 12.5 * C37 + 11.5 * C38 + 10.5 * C39 + 9.5 * C40 + 8.5 * C41 + 7.5 * C42 + 6.5 * C43 + 5.5 * C44 + 4.5 * C45 + 3.5 * C46 + 2.5 * C47 + 1.5 * C48 + .5 * C49 - .5 * C50 - 1.5 * C51 - 2.5 * C52 - 3.5 * C53 - 4.5 * C54 - 5.5 * C55 - 6.5 * C56 - 7.5 * C57 - 8.5 * C58 - 9.5 * C59 - 10.5 * C60 - 11.5 * C61 - 12.5 * C62 - 13.5 * C63 - 14.5 * C64 - 15.5 * C65 - 16.5 * C66 - 17.5 * C67 - 18.5 * C68 - 19.5 * C69 - 20.5 * C70 - 21.5 * C71 - 22.5 * C72 - 23.5 * C73 - 24.5 * C74 - 25.5 * C75 - 26.5 * C76 - 27.5 * C77 - 28.5 * C78 - 29.5 * C79 - 30.5 * C80 - 31.5 * C81 - 32.5 * C82 - 33.5 * C83 - 34.5 * C84 - 35.5 * C85 - 36.5 * C86 - 37.5 * C87 - 38.5 * C88 - 39.5 * C89 - 40.5 * C90 - 41.5 * C91 - 42.5 * C92 - 43.5 * C93 - 44.5 * C94 - 45.5 * C95 - 46.5 * C96 - 47.5 * C97 - 48.5 * C98 - 49.5 * C99) / 83325 > 0
You may wish to review the following:
Using Linear Regression vs Classical Peaks/Valleys for Divergence Analysis
-Bruce
|

 Worden Trainer
Joined: 10/7/2004 Posts: 65,138
|
Bustermu covers this in some detail in his Tuesday, April 04, 2006 12:12:34 PM ET post in Using Linear Regression vs Classical Peaks/Valleys for Divergence Analysis. I just add up the sums of the squares of the factors:
5.5 ^ 2 + 4.5 ^ 2 + 3.5 ^ 2 + 2.5 ^ 2 + 1.5 ^ 2 + .5 ^ 2 + (- 5) ^ 2 + (- .5) ^ 2 + (-2.5) ^ 2+ (-3.5) ^ 2 + (-4.5) ^ 2 + (-5.5) ^ 2 = 143
The method outlined by bustermu is shorter and more efficient.
P * (P ^ 2 - 1) / 12 = 12 * (12 ^ 2 - 1) / 12 = 143
That said, if you only care if the slope is positive or negative, the denominater used just needs to be positive value (and if that positive value is 1, it can be eliminated entirely):
So while we get:
Positive 70-Period LR Slope:
(34.5 * C + 33.5 * C1 + 32.5 * C2 + 31.5 * C3 + 30.5 * C4 + 29.5 * C5 + 28.5 * C6 + 27.5 * C7 + 26.5 * C8 + 25.5 * C9 + 24.5 * C10 + 23.5 * C11 + 22.5 * C12 + 21.5 * C13 + 20.5 * C14 + 19.5 * C15 + 18.5 * C16 + 17.5 * C17 + 16.5 * C18 + 15.5 * C19 + 14.5 * C20 + 13.5 * C21 + 12.5 * C22 + 11.5 * C23 + 10.5 * C24 + 9.5 * C25 + 8.5 * C26 + 7.5 * C27 + 6.5 * C28 + 5.5 * C29 + 4.5 * C30 + 3.5 * C31 + 2.5 * C32 + 1.5 * C33 + 0.5 * C34 - 0.5 * C35 - 1.5 * C36 - 2.5 * C37 - 3.5 * C38 - 4.5 * C39 - 5.5 * C40 - 6.5 * C41 - 7.5 * C42 - 8.5 * C43 - 9.5 * C44 - 10.5 * C45 - 11.5 * C46 - 12.5 * C47 - 13.5 * C48 - 14.5 * C49 - 15.5 * C50 - 16.5 * C51 - 17.5 * C52 - 18.5 * C53 - 19.5 * C54 - 20.5 * C55 - 21.5 * C56 - 22.5 * C57 - 23.5 * C58 - 24.5 * C59 - 25.5 * C60 - 26.5 * C61 - 27.5 * C62 - 28.5 * C63 - 29.5 * C64 - 30.5 * C65 - 31.5 * C66 - 32.5 * C67 - 33.5 * C68 - 34.5 * C69) / 28577.5 > 0
Negative 70-Period LR Slope:
(34.5 * C + 33.5 * C1 + 32.5 * C2 + 31.5 * C3 + 30.5 * C4 + 29.5 * C5 + 28.5 * C6 + 27.5 * C7 + 26.5 * C8 + 25.5 * C9 + 24.5 * C10 + 23.5 * C11 + 22.5 * C12 + 21.5 * C13 + 20.5 * C14 + 19.5 * C15 + 18.5 * C16 + 17.5 * C17 + 16.5 * C18 + 15.5 * C19 + 14.5 * C20 + 13.5 * C21 + 12.5 * C22 + 11.5 * C23 + 10.5 * C24 + 9.5 * C25 + 8.5 * C26 + 7.5 * C27 + 6.5 * C28 + 5.5 * C29 + 4.5 * C30 + 3.5 * C31 + 2.5 * C32 + 1.5 * C33 + 0.5 * C34 - 0.5 * C35 - 1.5 * C36 - 2.5 * C37 - 3.5 * C38 - 4.5 * C39 - 5.5 * C40 - 6.5 * C41 - 7.5 * C42 - 8.5 * C43 - 9.5 * C44 - 10.5 * C45 - 11.5 * C46 - 12.5 * C47 - 13.5 * C48 - 14.5 * C49 - 15.5 * C50 - 16.5 * C51 - 17.5 * C52 - 18.5 * C53 - 19.5 * C54 - 20.5 * C55 - 21.5 * C56 - 22.5 * C57 - 23.5 * C58 - 24.5 * C59 - 25.5 * C60 - 26.5 * C61 - 27.5 * C62 - 28.5 * C63 - 29.5 * C64 - 30.5 * C65 - 31.5 * C66 - 32.5 * C67 - 33.5 * C68 - 34.5 * C69) / 28577.5 < 0
We can get the same results without using the denominator of 28577.5 at all:
Positive 70-Period LR Slope:
34.5 * C + 33.5 * C1 + 32.5 * C2 + 31.5 * C3 + 30.5 * C4 + 29.5 * C5 + 28.5 * C6 + 27.5 * C7 + 26.5 * C8 + 25.5 * C9 + 24.5 * C10 + 23.5 * C11 + 22.5 * C12 + 21.5 * C13 + 20.5 * C14 + 19.5 * C15 + 18.5 * C16 + 17.5 * C17 + 16.5 * C18 + 15.5 * C19 + 14.5 * C20 + 13.5 * C21 + 12.5 * C22 + 11.5 * C23 + 10.5 * C24 + 9.5 * C25 + 8.5 * C26 + 7.5 * C27 + 6.5 * C28 + 5.5 * C29 + 4.5 * C30 + 3.5 * C31 + 2.5 * C32 + 1.5 * C33 + 0.5 * C34 - 0.5 * C35 - 1.5 * C36 - 2.5 * C37 - 3.5 * C38 - 4.5 * C39 - 5.5 * C40 - 6.5 * C41 - 7.5 * C42 - 8.5 * C43 - 9.5 * C44 - 10.5 * C45 - 11.5 * C46 - 12.5 * C47 - 13.5 * C48 - 14.5 * C49 - 15.5 * C50 - 16.5 * C51 - 17.5 * C52 - 18.5 * C53 - 19.5 * C54 - 20.5 * C55 - 21.5 * C56 - 22.5 * C57 - 23.5 * C58 - 24.5 * C59 - 25.5 * C60 - 26.5 * C61 - 27.5 * C62 - 28.5 * C63 - 29.5 * C64 - 30.5 * C65 - 31.5 * C66 - 32.5 * C67 - 33.5 * C68 - 34.5 * C69 > 0
Negative 70-Period LR Slope:
34.5 * C + 33.5 * C1 + 32.5 * C2 + 31.5 * C3 + 30.5 * C4 + 29.5 * C5 + 28.5 * C6 + 27.5 * C7 + 26.5 * C8 + 25.5 * C9 + 24.5 * C10 + 23.5 * C11 + 22.5 * C12 + 21.5 * C13 + 20.5 * C14 + 19.5 * C15 + 18.5 * C16 + 17.5 * C17 + 16.5 * C18 + 15.5 * C19 + 14.5 * C20 + 13.5 * C21 + 12.5 * C22 + 11.5 * C23 + 10.5 * C24 + 9.5 * C25 + 8.5 * C26 + 7.5 * C27 + 6.5 * C28 + 5.5 * C29 + 4.5 * C30 + 3.5 * C31 + 2.5 * C32 + 1.5 * C33 + 0.5 * C34 - 0.5 * C35 - 1.5 * C36 - 2.5 * C37 - 3.5 * C38 - 4.5 * C39 - 5.5 * C40 - 6.5 * C41 - 7.5 * C42 - 8.5 * C43 - 9.5 * C44 - 10.5 * C45 - 11.5 * C46 - 12.5 * C47 - 13.5 * C48 - 14.5 * C49 - 15.5 * C50 - 16.5 * C51 - 17.5 * C52 - 18.5 * C53 - 19.5 * C54 - 20.5 * C55 - 21.5 * C56 - 22.5 * C57 - 23.5 * C58 - 24.5 * C59 - 25.5 * C60 - 26.5 * C61 - 27.5 * C62 - 28.5 * C63 - 29.5 * C64 - 30.5 * C65 - 31.5 * C66 - 32.5 * C67 - 33.5 * C68 - 34.5 * C69 < 0
-Bruce Personal Criteria Formulas TC2000 Support Articles
|